A new type of computer memory which could solve the digital technology energy crisis has been invented and patented by scientists from Lancaster University in the UK. The electronic memory device -- described in research published in Scientific Reports -- promises to transform daily life with its ultra-low energy consumption. In the home, energy savings from efficient lighting and appliances have been completely wiped out by increased use of computers and gadgets, and by 2025 a 'tsunami of data' is expected to consume a fifth of global electricity. But this new device would immediately reduce peak power consumption in data centres by a fifth.
It would also allow, for example, computers which do not need to boot up and could instantaneously and imperceptibly go into an energy-saving sleep mode -- even between key stokes. The device is the realisation of the search for a "Universal Memory" which has preoccupied scientists and engineers for decades. Physics Professor Manus Hayne of Lancaster University said: "Universal Memory, which has robustly stored data that is easily changed, is widely considered to be unfeasible, or even impossible, but this device demonstrates its contradictory properties." A US patent has been awarded for the electronic memory device with another patent pending, while several companies have expressed an interest or are actively involved in the research. The inventors of the device used quantum mechanics to solve the dilemma of choosing between stable, long-term data storage and low-energy writing and erasing.
The device could replace the $100bn market for Dynamic Random Access Memory (DRAM), which is the 'working memory' of computers, as well as the long-term memory in flash drives. While writing data to DRAM is fast and low-energy, the data is volatile and must be continuously 'refreshed' to avoid it being lost: this is clearly inconvenient and inefficient. Flash stores data robustly, but writing and erasing is slow, energy intensive and deteriorates it, making it unsuitable for working memory. Professor Hayne said: "The ideal is to combine the advantages of both without their drawbacks, and this is what we have demonstrated. Our device has an intrinsic data storage time that is predicted to exceed the age of the Universe, yet it can record or delete data using 100 times less energy than DRAM."
Story Source: Materials provided by Lancaster University. Note: Content may be edited for style and length.
Journal Reference: Ofogh Tizno, Andrew R. J. Marshall, Natalia Fernández-Delgado, Miriam Herrera, Sergio I. Molina, Manus Hayne. Room-temperature Operation of Low-voltage, Non-volatile, Compound-semiconductor Memory Cells. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45370-1
When you subscribe to the blog, we will send you an e-mail when there are new updates on the site so you wouldn't miss them.
When Hurricane Helene tore through Western North Carolina, it left a profound impact on the region, bringing destructive floods, landslides, and wind damage that upended lives and devastated landscape...
A stroke of remarkable luck, Jerry Hicks of Banner Elk, North Carolina, discovered a $20 bill lying in a convenience store parking lot. That small find transformed into a life-changing fortune when he...
On September 11, 2001, the world watched in shock as one of the most tragic events in modern history unfolded. In a matter of hours, the skyline of New York City was forever changed, and with it, the ...
Have you ever wondered how a high-sugar diet, which spells trouble for humans, could be the key to survival for another species? Bats, the nocturnal creatures that often capture our imagination with t...
A recent study has revealed that the estimated death toll of birds due to building collisions significantly underrepresents the true scale of the problem. NC Lights Out September 6 - October 6, ...